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Distribution of escape times for a deterministically driven bistable system

JoséManuel Casado and Jose´ Gómez-Ordo´ñez
Área de Fı´sica Teo´rica, Universidad de Sevilla, Apartado Correos 1065, 41080 Sevilla, Spain

~Received 25 March 1999!

In this paper, we analyze the sequence of escape times for a particle in a symmetric double-well potential
coupled to a chain of monodimensional oscillators and we find that, in some range of energies, the probability
of escape exhibits the multimodal form that is characteristic of bistable systems driven by a periodic signal
embedded in noise. We identify two different modes contributing to the overall hopping dynamics of the
particle, each one having a definite dependence on the energy of the chain. Those findings suggest a model for
internal fluctuations that could be useful in the study of some problems of interest in physics and biology.

PACS number~s!: 05.40.2a
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I. INTRODUCTION

The appearance of fluctuations in deterministic system
a problem of general interest and has been an important
ject of statistical mechanics for a long time@1#. The oldest
successful derivations of equations of motion for syste
interacting with a heat bath were done in the context
Brownian motion @2#. These derivations start from th
Hamiltonian model of a system coupled to a properly cho
heat bath and, after elimination of the bath variables, ar
at a~generalized! Langevin equation for the system variabl
alone. The detailed character of the noise terms appearin
this Langevin description is dependent upon the mode
heat bath and the kind of coupling that are assumed. Usu
a collection of harmonic oscillators is used to model the h
bath variables. In this case, it can be proved that, in
so-called weak coupling limit, the noisy term describing t
fluctuations is Gaussian and obeys a fluctuation-dissipa
theorem.

In the context of stochastic dynamics, the problem of
escape of a particle from a basin of attraction has a long
distinguished history. In particular, time-interval sequen
associated with the escape of a particle from a basin of
traction have been the subject of a great deal of interest in
last few years for bistable@3,4# as well as for metastabl
@5,6# and excitable@7,8# systems. In the study of stochast
resonance phenomena in bistable systems, for example
use of distributions of switching times has become inst
mental to gain some understanding about the coherenc
the response to periodic forcing embedded in noise@4#. On
the other hand, in the context of stochastic models of n
ronal behavior, the importance of bistability to explain ba
characteristics of the dynamics of sensory neurons has
pointed out by Longtin and co-workers@3#. Those authors
have stressed the role of noise in the transmission of sen
information by showing that, for a rather simple bistable s
tem subject to a combination of subthreshold forcing a
noise, the characteristic multimodal structure of the proba
ity density of escape times, which cannot exist in absenc
the noise term, exhibit all the substantive features of exp
mental interspike intervals histograms recorded from p
odically forced sensory neurons.

The aim of this paper is to analyze the distribution
escape times of a bistable system embedded in a purely
PRE 611063-651X/2000/61~1!/261~6!/$15.00
is
b-

s
f

n
e

in
f

ly,
t
e

n

e
d

s
t-

he

the
-
in

u-
c
en

ry
-
d
l-
of
i-
i-

f
e-

terministic environment and to show that here too, a mu
modal structure is obtained. In particular, we start from
fully Halmiltonian model of a particle moving in a doubl
well potential and coupled to a chain of one-dimensio
oscillators and we study the effects that on its hopping
namics has the amount of energy made available to
whole system. By analyzing the distribution of escape tim
of the particle, we are able to show that despite its pur
deterministic dynamics, it makes sense to describe the es
process as promoted by the action of a noisy signal com
from the environment.

In stochastic models of the well-to-well hopping of a pa
ticle in a bistable potential, a forcing term embedded in no
is usually used to drive the deterministic equation of mot
for the particle. Thus, some control over the signal that
being delivered to the system is assumed when using th
models@3#. At variance with the system studied by Longt
et al. and many others, in the model at hand we do not h
control over the signal driving the tagged particle and it
only a posteriory that a distinction can be made betwe
oscillating and noiselike components of the forcing. Th
this model allows us to analyze some consequences of
additive forcing on the dynamics of a particle in a doub
well potential.

II. THE MODEL

Let us consider first a one-dimensional chain ofN linearly
coupled oscillators described by a dimensionless Ham
tonian in the form

H5 (
k51

N F ẋk

2
1

1

2
c2~xk2xk21!21V~xk!G . ~1!

In the absence of an on-site potentialV(x), this model would
describe acoustic vibrations in whichc is the speed of sound
in units of lattice constant. In our numerical study, we ha
setc50.5. Here we shall also assume that the on-site po
tials corresponding to the sites have the general form
261 ©2000 The American Physical Society
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V~x!5
1

2

x21ax4

11x2
. ~2!

The case witha51 corresponds to the harmonic potent
with unit angular frequency (v051) and those withaÞ1
correspond to the so-calledsoft potentials. For a50, the
potentialV(x) is harmonic at low amplitudes and saturates
a constant at high amplitudes. Translationally invariant, o
dimensional chains with soft on-site potentials have been
subject of some interest recently in the context of stocha
localization associated with the interplay of anharmonic
and noise@9#.

To characterize the dynamics of each oscillator in
chain, we have mapped its motion into a point process gi
by

sk~ t !5(
i

d~ t2t i
k!, k51, . . . ,N, ~3!

where sk(t) is a dimensionless function and$t i
k ; i

51,2, . . .% are the instants of time at which the position
the kth oscillator crosses in either direction its stable eq
librium point at x50. As all the oscillators in the chain
behave in a similar way, we can safely drop the subindexk in
Eq. ~3! and refer simply to the ‘‘signal’’s(t). From it, we
can obtain the distribution of crossing times by the equil
rium point of each oscillatorP(t) and also the time correla
tion functionC(t), and its associated spectral densityS(n).
In Fig. 1, we have plotted this last quantity for an arbitra
unit of a closed chain ofN550 harmonic oscillators (a
51). As we can observe, this function shows quite narr
peaks at the frequencyn5v0 /p and its harmonics. This fac
allows us to describe the chain as performing a global p
odic oscillation with a frequencyv051. The existence of a
frequency-locked motion is corroborated by the distribut
of crossing times by the equilibrium point, which is shown
the inset of Fig. 1. Indeed,P(t) shows a quite narrow pea
around half the period of the motion in the harmonic we
T0/25p/v0. The form of both, the spectral density and t
distribution of crossing times, are independent of the ini

FIG. 1. Spectral density associated with the processsk(t) with
arbitraryk, for a closed, one-dimensional chain of harmonic os
lators. In the inset, the first passage time distribution function
depicted, showing a narrow peak around half the natural perio
the oscillators. All the magnitudes are given in arbitrary units.
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energy made available to the whole chain and allows us
visualize the motion of each unit as performing an oscillat
with a slowly modulated amplitude.

At variance with the harmonic case, the distribution
crossing times associated with a one-dimensional chain
soft oscillators is quite broad. In Fig. 2, such a distribution
depicted for an arbitrary oscillator and for some values of
energy. As we can see, it gets smoother and broader as
energy is increased. Thus, there are not a single time s
for the crossing process by the stable equilibrium point ax
50 and consequently, the motion of each oscillator lac
coherence. This fact is corroborated by the correspond
spectral densities which are also depicted in Fig. 2. As
can observe, these power spectra reflects basically a n
background, this effect being more evident as the energ
the chain increases.

Let us consider now a chain ofN11 oscillators in which
those numbered 1 toN has on-site potentials given by Eq
~2!. On the other hand, the particle at theN11 site is sub-
jected to the typical bistable potential

V~x!52
x2

2
1

x4

4
. ~4!

This function has two symmetric minima separated by a
tential barrier whose height is equal to 0.25. As before,
assume the existence of periodic boundary conditions, so
the oscillators 1 andN11 are coupled in the same way a
any other pair of nearest neighbors. In Fig. 3, a sketch of

-
s
of

FIG. 2. Distributions of first passage times~left panels! and the
corresponding spectral densities of the signals(t) as a function of
the frequency, both in arbitrary units~right panels! for a given
element in a closed, one-dimensional chain of soft oscillatorsa
50).

FIG. 3. Diagram sketching part of a one-dimensional chain
interacting harmonic oscillators coupled to a particle moving in
double well potential. The segments connecting neighboring p
ticles represent interactions. The tagged particle can hop from
to well as a consequence of its coupling with the rest of the os
lators in the chain.
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system is depicted in which it is apparent that the tag
particle ~the oscillator moving in the bistable potential! can
jump from well to well if it has enough energy to surmou
the potential barrier between them, the probability of t
event being dependent on the amount of energy locally
livered to it by the rest of the system.

When a chain made of identical units is coupled to
particle in a double well potential, the behavior of the diffe
ent oscillators in it becomes dependent on the distance to
tagged particle. Nevertheless, this dependence decays
the distance and for a chain made of a big number of sin
oscillators, the vast majority of them behaves in an ana
gous way which is independent on whether the tagged
ticle is present or not. So, we can characterize the asymp
behavior of the chain by using an oscillator which is f
away from the tagged particle. We have taken a closed c
of N549 elements and the oscillator characterizing the
havior of the chain is just the opposite to the tagged parti

The dynamics of the tagged particle can also be cha
terized by mapping its motion into the point process

r ~ t !5(
i

d~ t2t i !, ~5!

where$t i ; i 51,2, . . .% are now the instants of time at whic
its position crosses in either direction the unstable equi
rium point atx50. In this form, a dimensionless signal wit
the structure of a Dirac comb is constructed which is ana
gous to the one employed in theoretical neurobiology
model the spike train produced by a neuron@10#.

III. THE DISTRIBUTION OF FIRST PASSAGE TIMES

In this section, we shall analyze some aspects of the
namics of the tagged particle by using the information c
ried by the signalr (t). In order to obtain a realization of thi
signal, we must solve the equations of motion of all t
particles in our system to obtain the position of the tagg
particle as a function of time. We have done this part of
calculation by means of a fourth order Runge-Kutta alg
rithm with time steph50.001, and using different sets o
initial conditions. Initially, all the oscillators in the chain ar
placed at their equilibrium points and their velocities a
distributed around the central value by using a Gaussian
a very narrow dispersion. The tagged particle is placed at
at the bottom of the left well.

Each one of those initial conditions allows us to calcul
the total amount of energy that is delivered initially to t
whole chain. If that energy is great enough, the tagged
ticle will occasionally jump from well to well as time goe
by. We have obtained 300 realizations of the position of
tagged particle as a function of time, each one consisting
221 time steps following a initial evolution of 217 time steps
that we have discarded for calculation purposes. During
temporal evolution the tagged particle performs very ma
hops from well to well, and this fact allows us to determi
the statistics of the crossing times by the top of the barr
The total number of jumps performed is dependent on
energy delivered initially to the whole chain. In our simul
tion, this number ranges from 73104 (E517.81) to 3
3103 (E52.16). The distribution of escape times has be
d

s
e-

he
ith
le
-
r-
tic

in
-

e.
c-

-

-
o

y-
-

d
e
-

th
st

e

r-

e
of

ts
y

r.
e

n

constructed by computing the time intervals between suc
sive crossings and accumulating them to the bins of a s
able discretization of the time axis. On the other hand,
have calculated the correlation function of the signalr (t)
and its associated spectral density.

It is well known that the behavior of a system of coupl
oscillators is strongly dependent of the coupling strength.
a weak enough coupling (c<0.3), the behavior of the tagge
particle is almost independent of the motion of the cha
provided that the energy is not very great with respect to
barrier height of the bistable potential. In this regime, t
tagged particle can remain for a long time in one of the we
until a fluctuation in its energy allows it to surmount th
barrier and to hop to the other well. Moreover, if such
process takes place, the weak coupling makes very imp
able the losing of the energy by the tagged particle and s
will remain for a long time jumping from well to well with
its natural frequency.

For strong coupling (c>0.7), the dynamics of the whole
system is governed by the frequent interchange of ene
between the tagged particle and the chain of oscillators
the chain has enough energy to allow the tagged particl
jump from well to well, the distribution of escape times d
velops a broad monomodal estructure centered at the na
frequency of the oscillators in the chain. In this work we a
interested in the intermediate coupling regime (0.3,c
,0.7), where the appearance of a complex pattern of forc
is to be expected. The results presented here correspon
the casec50.5.

A. Harmonic chain

We can consider the oscillatory motion of the chain
providing the driving on the tagged particle although we c
no longer speak of a forcing signal, as would be the cas
we had an external signal acting on the particle. To desc
the nature of the driving in our case it is necessary to
scribe the motion it gives rise, determining whether it ha
smooth component or not. To start, we have studied the
tribution of escape times from a well, because this quan
provides useful information about the existence of oscillat
components in the overall motion. In Fig. 4, the distributi
of escape times,P(t) is depicted for a the chain consisting o
N549 harmonic oscillators of unit frequency. When the a
erage energy per oscillator in the chain is far greater than
corresponding to the potential barrier of the tagged part
(E517.81 means an average energy per oscillator
0.3562), the motion in the double well is dominated
jumps associated with the natural motion of the chain a
P(t) is clearly monomodal with the peak centered arou
T0/2. In fact, for this range of energies, the existence o
barrier does not affect appreciably the dynamics of
tagged particle and its crossings by the top of the bar
cannot be associated with a regime in which clearly defin
dwelling times in each well are separated by sudden well
well jumps. In Fig. 5, the height of this very first peak o
P(t) has been plotted to show its nonmonotonous dep
dence on the chain energy. In fact, superposed to an ov
decreasing trend, we can observe some energies for w
the contribution to the motion of the tagged particle of th
peak is enhanced.
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264 PRE 61JOSÉMANUEL CASADO AND JOSÉGÓMEZ-ORDÓÑEZ
On the other hand, when each oscillator in the chain
an energy that, on the average, is lower than the barrier
the tagged particle must surmount to go to the other well,
distribution of escape times develops a multimodal form
sociated with a fundamental period and its higher harmon
That means that the motion of the tagged particle in t
range of energies can be described as a combination of
dence times in each well followed by rapid escape proce
driven by local excitations. This multimodal component
P(t) is dominant for very low energies but, as shown in F
4, for an average energy per oscillator equal to 0.148E
57.409), the dynamics of the tagged particle clearly mix
both components. Observe that the second peak of the
timodal structure always remains quite small, its domina
comimg from the relative lowering of the first peak. This fa
is also evident by looking at Fig. 6, in which a closer look
the evolution ofP(t) is taken. There, it can be observed th

FIG. 4. Distribution of escape times for the tagged particle
some values of the adimensionalized energy. Each one of t
distributions has been obtained by collecting a big number of in
vals between the successive crossing of the particle over the to
the barrier and arranging them to form a histogram.

FIG. 5. Height of the first two peaks of the distribution of esca
times for the tagged particle as a function of the total energy of
chain. Open circles indicate the height of the first peak and aste
correspond to the second peak. Lines are depicted as a guide
eye.
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for some energies, the contribution of the first peak sudde
decreases in relation with the dominant peak of the multim
dal structure.

In the study of the motion of a particle in a bistable p
tential driven by a combination of a sinusoidal signal plus
noise, the existence of a multimodalP(t) indicates the im-
perfect phase locking of the interwell hopping motion to t
frequency of the forcing term. This fact is usually associa
with the noise-induced skipping of some jumps@3#. Here too,
the multimodal form ofP(t) suggest that, despite being of
purely deterministic nature, we can interpret the driving
our system as providing an oscillatory component that ro
the tagged particle within each well and enhances perio
cally the probability of a jump over the barrier. Once th
oscillatory component has driven the tagged particle to
most favorable state to jump to the other well, the action
some other components in the driving can avoid the ac
completion of the jump. Thus, there is a probability that t
particle skips one or more periods of the driving signal, t
fact being associated with the secondary peaks of decrea
magnitude in the distribution of escape times. This skipp
suggest the existence of a noiselike component in the si
as experimented by the tagged particle.

The structure of the distribution of escape times for t
tagged particle can be interpreted as indicating the prese
in the signal of two components with different dynamic
roles. The first of those components reflects the pumping
energy in the bistable with a frequency associated with t
of the harmonic oscillators. In fact, for high enough ener
available in the chain, the only peak inP(t) is located at the
natural frequency of the harmonic oscillators in the cha
For lower energies, however, this frequency shifts to low
values. Although the overall trend of this component is c
related with the energy in the chain, for some energies
becomes nearly inexistent. There is a second component
ing from the well-to-well dynamics that mimics the behavi
of a bistable under the action of a periodic signal plus a no
term. As was pointed out above, both components are

t
se
r-
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e
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FIG. 6. Probability of escape times for some values of the
ergy aroundE55. For E55.620, the peak at timeT0/2 is clearly
dominant with respect to the first peak of the multimodal struct
associated with jumps between wells. This is also the case foE
54.290. However, for an intermediate energy asE54.932, the first
peak ofP(t) is lower than the second one.
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given as separate entities by the model. Instead, they ap
mixed in a signal that comes from the dynamics of the wh
chain.

Another way of characterizing the presence of differe
components in the signal follows from the calculation of t
spectral density of the signalr (t). The use of this quantity a
characterizing the response of a bistable system has
very much employed in the context of stochastic resona
@11#. It is a simple task to evaluate numerically the corre
tion function associated tor (t) @10#. From it, the correspond
ing spectral densityS(n) can be obtained straighforwardl
by using a numerical Fourier transform. In Fig. 7, the pow
spectrum is depicted for the same cases presented in F
Again, the existence of a periodic component in the signa
evidenced by the peaked structure ofS(n). On the other
hand, the appearance of a continuous background in
function can be associated with the presence of a noise
component inr (t). For high energies, the power spectru
shows only the peak corresponding toT0 ~and some smal
harmonics!. This is the hopping regime associated with
purely periodic driving in which the barrier height of th
bistable potential is irrelevant. As the energy is lowered,
motion of the tagged particle becomes more involved and
E'4.9, those peaks disappear at all. At the same time, a
feature appears in the spectrum in the form of a broad p
indicating the dominance of the well-to-well motion. At low
est energies, these two mechanisms coexist.

B. Anharmonic „soft… chain

As before, the coupling of the chain to a particle in
double well potential does not affect significantly to tho
oscillators which are far enough from it. In order to analy
the influence of the chain on the dynamics of the tagg
particle as described by the signals(t), we have depicted in
Fig. 8 the behavior of its distribution of first passage tim
for some values of the energy available in the whole cha
At low energies, the functionP(t) seems to be closer to th
corresponding to the harmonic chain although it lacks

FIG. 7. Spectral density of the signalr (t) as a function of the
frequency ~both in arbitrary units!. The cases corresponding t
those depicted in Fig. 4 have been plotted for comparison purpo
Observe the change of scale in the vertical axis.
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contribution of the first component. In this regime, as w
the case with a chain of harmonic oscillators, the well-
well dynamics of the tagged particle is dominant and
quasiharmonic nature of the soft potential near the equi
rium point makes things very similar to the purely harmon
case. At higher energies, the multimodal structure rema
but barrier crossings can be observed at any time. Obs
that the time of the second and successive peaks for
range of energies are not multiples of the time correspond
to the first peak. Indeed, when the energy is increased f
E53.924 toE56.171, a new second peak appears onP(t),
thus giving rise to another kind of temporal structure.

IV. CONCLUSIONS

In this paper we have studied the effects of the determ
istic dynamics of a chain of coupled oscillators on the b
havior of a particle in a double-well potential. The main go
was to infer some characteristics of the forcing by analyz
the motion of the tagged particle. For the case of an h
monic chain, the analysis of some quantities associated
the well-to-well hopping has lead us to distinguish two se
rate contributions to the forcing of the tagged particle, o
describing a periodic signal associated with the natural os
lation frequency of the chain oscillators and the other be
characterized as the superposition of a periodic signal
some kind of ‘‘internal noise.’’ Both components displa
very different behaviors when the energy of the chain is v
ied, one of them being dominant in the low energy range a
the other in the high energy region. In particular, for som
values of this control parameter, resonances in the interw
dynamics of the tagged particle have been found, indica
that for some specified energies, one of those componen
enhanced.

The comparison between the two different systems
have analyzed, gives us some clues about how the coher
of the well-to-well hopping of the tagged particle is affect
by the chain motion. When the oscillation modes in the ch
are narrowly distributed in frequency, the structure of t

es.

FIG. 8. Dependence on the energy of the distribution of fi
passage times of a particle in a double well potential interac
with a one-dimensional chain of soft oscillators (a50).
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signals(t) reflects this coherence. This is specially releva
when there are high energy modes in the chain. On the o
hand, for some energies in low energy regime the temp
structure of the crossing times is quite independent, at l
qualitatively, of the detailed form of the on-site potentials.
those cases, the hopping dynamics of the tagged partic
similar to the corresponding to a periodic forcing of su
threshold intensity embedded in noise. Nevertheless,
similarity does not hold for the full low-energy range b
cause some effects of the coherence in the chain motion
detectable even for those energies.

The role of internal noise in neuronal dynamics and
possible consequences to sensory transduction have bee
subject of some interest recently. The interplay of intrin
oscillations and noise seems to be at the basis of the rem
able encoding properties of some sensory detectors@12#. In
many stochastic models of excitable systems describing
cc
t
er
al
st

is
-
is

re

s
the

c
rk-

u-

ronal dynamics, a stochastic term describing the neural n
is added to a coherent signal in order to analyze the effect
intrinsic and/or extrinsic fluctuations on the neuron perf
mance.

However, it is not clear at all that the oscillatory and noi
components of the membrane behavior could always
treated as separate processes. The use of a model as th
developed here, for example, in situations where the tag
particle is subjected to external periodic forcing, can resul
gaining some understanding on the transduction propertie
systems in which this separation is unfair.
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