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Distribution of escape times for a deterministically driven bistable system
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In this paper, we analyze the sequence of escape times for a particle in a symmetric double-well potential
coupled to a chain of monodimensional oscillators and we find that, in some range of energies, the probability
of escape exhibits the multimodal form that is characteristic of bistable systems driven by a periodic signal
embedded in noise. We identify two different modes contributing to the overall hopping dynamics of the
particle, each one having a definite dependence on the energy of the chain. Those findings suggest a model for
internal fluctuations that could be useful in the study of some problems of interest in physics and biology.

PACS numbes): 05.40—a

I. INTRODUCTION terministic environment and to show that here too, a multi-
modal structure is obtained. In particular, we start from a
The appearance of fluctuations in deterministic systems ifully Halmiltonian model of a particle moving in a double
a problem of general interest and has been an important sulbell potential and coupled to a chain of one-dimensional
ject of statistical mechanics for a long tinhi&]. The oldest oscillators and we study the effects that on its hopping dy-
successful derivations of equations of motion for systems&iamics has the amount of energy made available to the
interacting with a heat bath were done in the context ofwhole system. By analyzing the distribution of escape times
Brownian motion [2]. These derivations start from the of the particle, we are able to show that despite its purely
Hamiltonian model of a system coupled to a properly chosemjeterministic dynamics, it makes sense to describe the escape
heat bath and, after elimination of the bath variables, arrivgyrocess as promoted by the action of a noisy signal coming
at a(generalizeglLangevin equation for the system variables from the environment.
alpne. The Qetailed ghgrac_ter of the noise terms appearing in | stochastic models of the well-to-well hopping of a par-
this Langevin description is dependent upon the model Oficie in a bistable potential, a forcing term embedded in noise
heat bath and the kind of coupling that are assumed. Usuallyg ;g ;aly used to drive the deterministic equation of motion
a collection of harmonic oscillators is used to model the heaj, . yho harticle. Thus, some control over the signal that is
ggfgan:(g?:/);sk. clgutphlli?]gcleiﬁ?t’ 'tthgar‘]r:)ig; tg:%vzgs?r?ging t;\g%eing delivered to the system is assumed when using those
' models[3]. At variance with the system studied by Longtin

I:?:g#:ﬂlons is Gaussian and obeys a fluctuat|on-d|53|pat|ogt al.and many others, in the model at hand we do not have

In the context of stochastic dynamics, the problem of theContrOI over the signal dri.virlg t'he tagged particle and it is
escape of a particle from a basin of attraction has a long an@"ly @ posteriorythat a distinction can be made between
distinguished history. In particular, time-interval sequence£Scillating and noiselike components of the forcing. Thus,
associated with the escape of a particle from a basin of athis model allows us to analyze some consequences of non-
traction have been the subject of a great deal of interest in th@dditive forcing on the dynamics of a particle in a double
last few years for bistablg3,4] as well as for metastable Well potential.

[5,6] and excitablg 7,8] systems. In the study of stochastic
resonance phenomena in bistable systems, for example, the

use of distributions of switching times has become instru- Il. THE MODEL
mental to gain some understanding about the coherence in
the response to periodic forcing embedded in ng#e On Let us consider first a one-dimensional chairNdfnearly

the other hand, in the context of stochastic models of neucoupled oscillators described by a dimensionless Hamil-
ronal behavior, the importance of bistability to explain basiCignian in the form

characteristics of the dynamics of sensory neurons has been
pointed out by Longtin and co-workef8]. Those authors

have stressed the role of noise in the transmission of sensory N T

. . . . . Xk 1

information by showing that, for a rather simple bistable sys- H= S = (= X 1) 2+ V(X |. (1)
tem subject to a combination of subthreshold forcing and k112 2

noise, the characteristic multimodal structure of the probabil-

ity density of escape times, which cannot exist in absence of

the noise term, exhibit all the substantive features of experiin the absence of an on-site potentigk), this model would

mental interspike intervals histograms recorded from peridescribe acoustic vibrations in whictis the speed of sound

odically forced sensory neurons. in units of lattice constant. In our numerical study, we have
The aim of this paper is to analyze the distribution of setc=0.5. Here we shall also assume that the on-site poten-

escape times of a bistable system embedded in a purely d#gals corresponding to the sites have the general form
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FIG. 1. Spectral density associated with the proegés with
arbitraryk, for a closed, one-dimensional chain of harmonic oscil-  FIG. 2. Distributions of first passage timésft panel$ and the
lators. In the inset, the first passage time distribution function iscorresponding spectral densities of the sigs(@) as a function of
depicted, showing a narrow peak around half the natural period othe frequency, both in arbitrary unitgight panel$ for a given
the oscillators. All the magnitudes are given in arbitrary units. ~ element in a closed, one-dimensional chain of soft oscillaters (

=0).
1 X%+ ax? . .
V(X)== ———. (2)  energy made available to the whole chain and allows us to
2 1+x2 visualize the motion of each unit as performing an oscillation
with a slowly modulated amplitude.

The case witha=1 corresponds to the harmonic potential At variance with the harmonic case, the distribution of
with unit angular frequencydy=1) and those withw#1  crossing times associated with a one-dimensional chain of
correspond to the so-callesbft potentials For «=0, the  soft oscillators is quite broad. In Fig. 2, such a distribution is
potentialV(x) is harmonic at low amplitudes and saturates todepicted for an arbitrary oscillator and for some values of the
a constant at high amplitudes. Translationally invariant, oneenergy. As we can see, it gets smoother and broader as the
dimensional chains with soft on-site potentials have been thenergy is increased. Thus, there are not a single time scale
subject of some interest recently in the context of stochasti¢or the crossing process by the stable equilibrium point at
localization associated with the interplay of anharmonicity=0 and consequently, the motion of each oscillator lacks
and nois€9]. coherence. This fact is corroborated by the corresponding

To characterize the dynamics of each oscillator in thespectral densities which are also depicted in Fig. 2. As we
chain, we have mapped its motion into a point process givegan observe, these power spectra reflects basically a noisy
by background, this effect being more evident as the energy of
the chain increases.

Let us consider now a chain df+ 1 oscillators in which
those numbered 1 tbl has on-site potentials given by Eq.
(2). On the other hand, the particle at tNe-1 site is sub-

where s (t) is a dimensionless function andtf;i  Jjected to the typical bistable potential

=1,2, ...} are the instants of time at which the position of 2 4

the kth oscillator crosses in either direction its stable equi- V(X)=— X_+ X__ (4)
librium point at x=0. As all the oscillators in the chain 2 4

behave in a similar way, we can safely drop the subiridiex

Eq. (3) and refer simply to the “signal”s(t). From it, we  This function has two symmetric minima separated by a po-
can obtain the distribution of crossing times by the equilib-tential barrier whose height is equal to 0.25. As before, we
rium point of each oscillatoP(t) and also the time correla- assume the existence of periodic boundary conditions, so that
tion functionC(t), and its associated spectral densfy).  the oscillators 1 andN+1 are coupled in the same way as
In Fig. 1, we have plotted this last quantity for an arbitraryany other pair of nearest neighbors. In Fig. 3, a sketch of this
unit of a closed chain oN=50 harmonic oscillators (

=1). As we can observe, this function shows quite narrow

peaks at the frequenay= wy/ 7 and its harmonics. This fact

allows us to describe the chain as performing a global peri-

odic oscillation with a frequencyw,=1. The existence of a

frequency-locked motion is corroborated by the distribution £ 3. Diagram sketching part of a one-dimensional chain of
of crossing times by the equilibrium point, which is shown ininteracting harmonic oscillators coupled to a particle moving in a
the inset of Fig. 1. Indeed?(t) shows a quite narrow peak double well potential. The segments connecting neighboring par-
around half the period of the motion in the harmonic well, ticles represent interactions. The tagged particle can hop from well
To/2= 7wl wy. The form of both, the spectral density and theto well as a consequence of its coupling with the rest of the oscil-
distribution of crossing times, are independent of the initiallators in the chain.

sd()=2 8(t—t9), k=1,...N, 3
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system is depicted in which it is apparent that the taggedonstructed by computing the time intervals between succes-
particle (the oscillator moving in the bistable potenjign  sive crossings and accumulating them to the bins of a suit-
jump from well to well if it has enough energy to surmount able discretization of the time axis. On the other hand, we
the potential barrier between them, the probability of thishave calculated the correlation function of the signél)
event being dependent on the amount of energy locally deand its associated spectral density.
livered to it by the rest of the system. It is well known that the behavior of a system of coupled
When a chain made of identical units is coupled to aoscillators is strongly dependent of the coupling strength. For
particle in a double well potential, the behavior of the differ- a weak enough coupling&0.3), the behavior of the tagged
ent oscillators in it becomes dependent on the distance to thearticle is almost independent of the motion of the chain,
tagged particle. Nevertheless, this dependence decays wigitovided that the energy is not very great with respect to the
the distance and for a chain made of a big number of singléarrier height of the bistable potential. In this regime, the
oscillators, the vast majority of them behaves in an analotagged particle can remain for a long time in one of the wells
gous way which is independent on whether the tagged pawuntil a fluctuation in its energy allows it to surmount the
ticle is present or not. So, we can characterize the asymptotisarrier and to hop to the other well. Moreover, if such a
behavior of the chain by using an oscillator which is far process takes place, the weak coupling makes very improb-
away from the tagged particle. We have taken a closed chaiable the losing of the energy by the tagged patrticle and so, it
of N=49 elements and the oscillator characterizing the bewill remain for a long time jumping from well to well with
havior of the chain is just the opposite to the tagged particleits natural frequency.
The dynamics of the tagged particle can also be charac- For strong coupling¢=0.7), the dynamics of the whole
terized by mapping its motion into the point process system is governed by the frequent interchange of energy
between the tagged particle and the chain of oscillators. If
the chain has enough energy to allow the tagged particle to
r(t)=§i: S(t=ty), 5 jump from well to well, the distribution of escape times de-
velops a broad monomodal estructure centered at the natural
where{t;;i=1,2, . . .} are now the instants of time at which frequency of the oscillators in the chain. In this work we are

its position crosses in either direction the unstable equilibintérested in the intermediate coupling regime (0c3
rium point atx=0. In this form, a dimensionless signal with <0-7), where the appearance of a complex pattern of forcing
the structure of a Dirac comb is constructed which is analolS t0 beé expected. The results presented here corresponds to

gous to the one employed in theoretical neurobiology td€ case=0.5.
model the spike train produced by a neufdn).

A. Harmonic chain

IIl. THE DISTRIBUTION OF FIRST PASSAGE TIMES . . . .
We can consider the oscillatory motion of the chain as

In this section, we shall analyze some aspects of the dyproviding the driving on the tagged particle although we can
namics of the tagged particle by using the information carno longer speak of a forcing signal, as would be the case if
ried by the signat (t). In order to obtain a realization of this we had an external signal acting on the particle. To describe
signal, we must solve the equations of motion of all thethe nature of the driving in our case it is necessary to de-
particles in our system to obtain the position of the taggedscribe the motion it gives rise, determining whether it has a
particle as a function of time. We have done this part of thesmooth component or not. To start, we have studied the dis-
calculation by means of a fourth order Runge-Kutta algo-ribution of escape times from a well, because this quantity
rithm with time steph=0.001, and using different sets of provides useful information about the existence of oscillatory
initial conditions. Initially, all the oscillators in the chain are components in the overall motion. In Fig. 4, the distribution
placed at their equilibrium points and their velocities areof escape times?(t) is depicted for a the chain consisting of
distributed around the central value by using a Gaussian withN=49 harmonic oscillators of unit frequency. When the av-
a very narrow dispersion. The tagged particle is placed at restrage energy per oscillator in the chain is far greater than the
at the bottom of the left well. corresponding to the potential barrier of the tagged particle

Each one of those initial conditions allows us to calculate(E=17.81 means an average energy per oscillator of
the total amount of energy that is delivered initially to the 0.3562), the motion in the double well is dominated by
whole chain. If that energy is great enough, the tagged pajumps associated with the natural motion of the chain and
ticle will occasionally jump from well to well as time goes P(t) is clearly monomodal with the peak centered around
by. We have obtained 300 realizations of the position of thely/2. In fact, for this range of energies, the existence of a
tagged particle as a function of time, each one consisting dbarrier does not affect appreciably the dynamics of the
22! time steps following a initial evolution ofZ time steps  tagged particle and its crossings by the top of the barrier
that we have discarded for calculation purposes. During itg€annot be associated with a regime in which clearly defined
temporal evolution the tagged particle performs very manydwelling times in each well are separated by sudden well-to-
hops from well to well, and this fact allows us to determinewell jumps. In Fig. 5, the height of this very first peak of
the statistics of the crossing times by the top of the barrierP(t) has been plotted to show its nonmonotonous depen-
The total number of jumps performed is dependent on thelence on the chain energy. In fact, superposed to an overall
energy delivered initially to the whole chain. In our simula- decreasing trend, we can observe some energies for which
tion, this number ranges from 710* (E=17.81) to 3 the contribution to the motion of the tagged particle of this
X 10° (E=2.16). The distribution of escape times has beerpeak is enhanced.
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FIG. 4. Distribution of escape times for the tagged particle at FIG. 6. Probability of escape times for some values of the en-
some values of the adimensionalized energy. Each one of thesrgy aroundE=5. ForE=5.620, the peak at tim&y/2 is clearly
distributions has been obtained by collecting a big number of interdominant with respect to the first peak of the multimodal structure
vals between the successive crossing of the particle over the top efssociated with jumps between wells. This is also the cas& for
the barrier and arranging them to form a histogram. =4.290. However, for an intermediate energyEas4.932, the first

peak ofP(t) is lower than the second one.

On the other hand, when each oscillator in the chain ha
an energy that, on the average, is lower than the barrier th : : ) . .
the tagged particle must surmount to go to the other well, th ecreases in relation with the dominant peak of the multimo-

' dal structure.

distribution of escape times develops a multimodal form as- in th d4v of th . ¢ icle | bistabl
sociated with a fundamental period and its higher harmonics. n the study of the motion of a particle in a bistable po-

That means that the motion of the tagged particle in thistential driven by a combination of a sinusoidal signal plus a

range of energies can be described as a combination of reg}?'S€: the existence of mqltlmocﬁ(t) |nd.|cates t.he 'm-
dence times in each well followed by rapid escape processd!T€Ct phase locking of the interwell hopping motion to the

driven by local excitations. This multimodal component of requency (.)f the forcing t?”‘?- This fact iS. usually associated
P(t) is dominant for very low energies but, as shown in Fig.W'th the .n0|se-|nduced skipping of some Jun[ﬁga Her(_a too,

4, for an average energy per oscillator equal to 0.1B8 ( the muIUmoda} f_°r.m ofP(t) suggest that, despite belng of a

=7.409), the dynamics of the tagged particle clearly rniXespurely determ|n|st|q nature, we can interpret the driving in

both components. Observe that the second peak of the m ur system as p_rowdlrjg'an oscillatory component that rqck;
timodal structure always remains quite small, its dominancé e” tat%ged psrtt')ﬁl_te W']fh'n_ each well t?]ndbenhancgs pe?ﬁ.d"
comimg from the relative lowering of the first peak. This fact €@y the probability of & jump over the barrier. nce this

is also evident by looking at Fig. 6, in which a closer look atoscnlatory component has driven the tagged particle to the

the evolution ofP(t) is taken. There, it can be observed that MOSt favorable state to jump to th? .other well, the action of
' some other components in the driving can avoid the actual

completion of the jump. Thus, there is a probability that the

r some energies, the contribution of the first peak suddenly

0.8 particle skips one or more periods of the driving signal, this
fact being associated with the secondary peaks of decreasing
magnitude in the distribution of escape times. This skipping

06 |

as experimented by the tagged patrticle.

The structure of the distribution of escape times for the
0.4 1 tagged particle can be interpreted as indicating the presence
in the signal of two components with different dynamical
roles. The first of those components reflects the pumping of
0.2 1 energy in the bistable with a frequency associated with that
of the harmonic oscillators. In fact, for high enough energy
W***W available in the chain, the only peak ®{(t) is located at the

. s natural frequency of the harmonic oscillators in the chain.
For lower energies, however, this frequency shifts to lower
values. Although the overall trend of this component is cor-

FIG. 5. Height of the first two peaks of the distribution of escaper€lated with the energy in the chain, for some energies, it
times for the tagged particle as a function of the total energy of thddecomes nearly inexistent. There is a second component aris-
chain. Open circles indicate the height of the first peak and asterisk§ig from the well-to-well dynamics that mimics the behavior
correspond to the second peak. Lines are depicted as a guide to théa bistable under the action of a periodic signal plus a noise
eye. term. As was pointed out above, both components are not

J 1 suggest the existence of a noiselike component in the signal

Peak Height

0 5 10 15 20
E
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FIG. 7. Spectral density of the signalt) as a function of the t
frequency (both in arbitrary units The cases corresponding to ~ FIG. 8. Dependence on the energy of the distribution of first
those depicted in Fig. 4 have been plotted for comparison purposeBassage times of a particle in a double well potential interacting
Observe the change of scale in the vertical axis. with a one-dimensional chain of soft oscillatorg=0).

given as separate entities by the model. Instead, they appee@ntribution of the first component. In this regime, as was
mixed in a signal that comes from the dynamics of the wholghe case with a chain of harmonic oscillators, the well-to-
chain. well dynamics of the tagged particle is dominant and the
Another way of characterizing the presence of differentquasiharmonic nature of the soft potential near the equilib-
components in the signal follows from the calculation of therium point makes things very similar to the purely harmonic
spectral density of the signa(t). The use of this quantity as case. At higher energies, the multimodal structure remains
characterizing the response of a bistable system has beént barrier crossings can be observed at any time. Observe
very much employed in the context of stochastic resonancthat the time of the second and successive peaks for this
[11]. It is a simple task to evaluate numerically the correla-range of energies are not multiples of the time corresponding
tion function associated 1q(t) [10]. From it, the correspond- to the first peak. Indeed, when the energy is increased from
ing spectral density5(v) can be obtained straighforwardly E=3.924 toE=6.171, a new second peak appearsPgt),
by using a numerical Fourier transform. In Fig. 7, the powerthus giving rise to another kind of temporal structure.
spectrum is depicted for the same cases presented in Fig. 4.
Again, the existence of a periodic component in the signal is IV. CONCLUSIONS
evidenced by the peaked structure $(fr). On the other . _ .
hand, the agpearazce of a continugjs) background in this In this paper we have studied the effects of the determin-

function can be associated with the presence of a noiselik'é‘tic, dynamics .Of a chain of coupled osc_illators on t_he be-
component inr(t). For high energies, the power spectrum havior of a particle in a double-well potential. The main goal

- to infer some characteristics of the forcing by analyzing
shows only the peak corresponding g (and some small was to Ir )
harmonics. This is the hopping regime associated with athe motion of the tagged particle. For the case of an har-

purely periodic driving in which the barrier height of the monic chain, the analysis of some quantities associated with
- e;he well-to-well hopping has lead us to distinguish two sepa-

motion of the tagged particle becomes more involved and fofate cp_ntribution_s to the forcing O.f the te}gged particle, one
E~4.9, those peaks disappear at all. At the same time, a neﬂ}escnblng a periodic signal associated with the natural oscil-

feature appears in the spectrum in the form of a broad pea tion frequency of the chain ogc;illators and 'the. other being
indicating the dominance of the well-to-well motion. At low- characterized as the superposition of a periodic signal and

est energies, these two mechanisms coexist some kind of “internal noise.” Both components display
' ' very different behaviors when the energy of the chain is var-

ied, one of them being dominant in the low energy range and
the other in the high energy region. In particular, for some
As before, the coupling of the chain to a particle in avalues of this control parameter, resonances in the interwell
double well potential does not affect significantly to thosedynamics of the tagged particle have been found, indicating
oscillators which are far enough from it. In order to analyzethat for some specified energies, one of those components is
the influence of the chain on the dynamics of the tagge@&nhanced.
particle as described by the sigrsft), we have depicted in The comparison between the two different systems we
Fig. 8 the behavior of its distribution of first passage timeshave analyzed, gives us some clues about how the coherence
for some values of the energy available in the whole chainof the well-to-well hopping of the tagged particle is affected
At low energies, the functioR(t) seems to be closer to the by the chain motion. When the oscillation modes in the chain
corresponding to the harmonic chain although it lacks theare narrowly distributed in frequency, the structure of the

B. Anharmonic (soft) chain
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signals(t) reflects this coherence. This is specially relevantronal dynamics, a stochastic term describing the neural noise
when there are high energy modes in the chain. On the othés added to a coherent signal in order to analyze the effects of
hand, for some energies in low energy regime the tempordhtrinsic and/or extrinsic fluctuations on the neuron perfor-
structure of the crossing times is quite independent, at leashance.

qualitatively, of the detailed form of the on-site potentials. In  However, it is not clear at all that the oscillatory and noisy
those cases, the hopping dynamics of the tagged particle tomponents of the membrane behavior could always be
similar to the corresponding to a periodic forcing of sub-treated as separate processes. The use of a model as the one
threshold intensity embedded in noise. Nevertheless, thideveloped here, for example, in situations where the tagged
similarity does not hold for the full low-energy range be- particle is subjected to external periodic forcing, can result in
cause some effects of the coherence in the chain motion againing some understanding on the transduction properties of

detectable even for those energies. systems in which this separation is unfair.
The role of internal noise in neuronal dynamics and its
possible consequences to sensory transduction have been the ACKNOWLEDGMENT

subject of some interest recently. The interplay of intrinsic
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